2010 Inverse Problems Symposium- June 6th-8th E.Lansing, Michigan State University

Application of Taguchi Method for Inverse Problems: Determination of Actual Parameters from Measured Data

> Pavel Roy Paladhi Jose Hejase Chad Gardner Collin Meierbachtol Prem Chahal

Dept. of ECE, College of Engineering Michigan State University

Overview

- Introduction
- Filter design
- Taguchi Method
- Use of taguchi in inverse problem: discussion of results
- Conclusions

Introduction

- Initial Object: to make cheap quasi-optic devices in the THz spectrum.
- Design of a quarter-wavelength stacked dielectric filter
- Assembled thin film structure from PET.
- Response not very good wrt simulation.
- Cause for deviations: layer thickness, warping, incidence angle etc.
- Use the Taguchi method in this inverse problem scenario: to predict the actual filter parameters from the measured results.
- Coupled Taguchi method and transfer matrix method for this inverse problem.
- Presented is an example of application of Taguchi method in an inverse problem for EM, for the first time(?) and which could be generalized.

Filter Design

- The basic photonic crystal is composed of stacked layers of alternate high and low dielectric constant materials. This gives a bandstop response.
- Response is determined by the periodicity of the dielectric variation, the thickness of the different high and low dielectric materials used in the stacked configuration.
- For stacked quarter-wave structures, the gap-midgap ratio is given by equation:

Taguchi Method of Optimization

• Decreases no. of tests required in an optimization process by use of orthogonal arrays

• Easy to code

Orthogonal arrays:

•Fractional factorial approach

•Efficient way to determine control parameters with fewer no of experiments.

•Doesn't affect the accuracy of the results greatly compared to full factorial method.

Element	1	2	3	4	5	6	7	8	9	10	Fitness	S/N Ratio (dB)
1	1	1	1	1	1	1	1	1	1	1	5.153	-14.240
2	2	1	2	2	2	3	3	1	2	3	9.076	-19.157
3	3	1	3	3	3	2	2	1	3	2	9.578	-19.625
4	1	2	1	2	2	2	3	3	1	2	9.847	-19.866
5	2	2	2	3	3	1	2	3	2	1	6.821	-16.676
6	3	2	3	1	1	3	1	3	3	3	14.233	-23.066
7	1	3	1	3	3	3	2	2	1	3	12.898	-22.210
8	2	3	2	1	1	2	1	2	2	2	9.911	-19.922
9	3	3	3	2	2	1	3	2	3	1	9.073	-19.155
10	1	1	2	1	2	2	2	3	3	1	9.245	-19.319
11	2	1	3	2	3	1	1	3	1	3	14.696	-23.344
12	3	1	1	3	1	3	3	3	2	2	11.785	-21.427
13	1	2	2	2	3	3	1	2	3	2	7.690	-17.719
14	2	2	3	3	1	2	3	2	1	1	7.220	-17.171
15	3	2	1	1	2	1	2	2	2	3	11.447	-21.174
16	1	3	2	3	1	1	3	1	3	3	12.176	-21.710
17	2	3	3	1	2	3	2	1	1	2	7.716	-17.748
18	3	3	1	2	3	2	1	1	2	1	7.553	-17.563
19	1	1	3	1	3	3	3	2	2	1	10.495	-20.419
20	2	1	1	2	1	2	2	2	3	3	11.054	-20.871
21	3	1	2	3	2	1	1	2	1	2	12.142	-21.686
22	1	2	3	2	1	1	2	1	2	2	10.197	-20.169
23	2	2	1	3	2	3	1	1	3	1	11.646	-21.324
24	3	2	2	1	3	2	3	1	1	3	11.940	-21.540
25	1	3	3	3	2	2	1	3	2	3	11.702	-21.365
26	2	3	1	1	3	1	3	3	3	2	11.695	-21.360
27	3	3	2	2	1	3	2	3	1	1	9354	-19 420

Example of an orthogonal array used in designing up a set of experiments in Taguchi

Program Flow in Taguchi

Element	1	2	3	4	5	6	7	8	9	10	Fitness	S/N Ratio (dB)
1	1	1	1	1	1	1	1	1	1	1	5.153	-14.240
2	2	1	2	2	2	3	3	1	2	3	9.076	-19.157
3	3	1	3	3	3	2	2	1	3	2	9.578	-19.625
4	1	2	1	2	2	2	3	3	1	2	9.847	-19.866
5	2	2	2	3	3	1	2	3	2	1	6.821	-16.676
6	3	2	3	1	1	3	1	3	3	3	14.233	-23.066
7	1	3	1	3	3	3	2	2	1	3	12.898	-22.210
8	2	3	2	1	1	2	1	2	2	2	9,911	-19.922
9	3	3	3	2	2	1	3	2	3	1	9.073	-19.155
10	1	1	2	1	2	2	2	3	3	1	9.245	-19.319
11	2	1	3	2	3	1	1	3	1	3	14.696	-23.344
12	3	1	1	3	1	3	3	3	2	2	11.785	-21.427
13	1	2	2	2	3	3	1	2	3	2	7.690	-17.719
14	2	2	3	3	1	2	3	2	1	1	7.220	-17.171
15	3	2	1	1	2	1	2	2	2	3	11.447	-21.174
16	1	3	2	3	1	1	3	1	3	3	12.176	-21.710
17	2	3	3	1	2	3	2	1	1	2	7.716	-17.748
18	3	3	1	2	3	2	1	1	2	1	7.553	-17.563
19	1	1	3	1	3	3	3	2	2	1	10.495	-20.419
20	2	1	1	2	1	2	2	2	3	3	11.054	-20.871
21	3	1	2	3	2	1	1	2	1	2	12.142	-21.686
22	1	2	3	2	1	1	2	1	2	2	10.197	-20.169
23	2	2	1	3	2	3	1	1	3	1	11.646	-21.324
24	3	2	2	1	3	2	3	1	1	3	11.940	-21.540
25	1	3	3	3	2	2	1	3	2	3	11.702	-21.365
26	2	3	1	1	3	1	3	3	3	2	11.695	-21.360
27	3	3	2	2	1	3	2	3	1	1	9.354	-19.420

Example of an orthogonal array used in setting up a set of experiments in Taguchi

Basic algorithm in Taguchi method

Direct application to actual PET-film bandstop filter

Frequency (THz-range)

IPS 2818

Modelling the filter warping

Approach1: Pixelating the filter to account for the warping.

- Filter treated as a combination of pixels, each giving it's own response.
- •Total response is an average of these pixel responses.
- •Surface relief of the filter studied to determine distribution of warping within the layers
- •Reflection intensity measured, correlated to surface warping.

Warp models for different surface profiles

2010

(a) Bulge-bulge

(c) Trough-Plane

Warping of outer layers affect the distribution inside.

Some possible distributions shown here

(b) Trough-trough

(d) Bulge-plane

Surface profile of the filter

Surface profile of the filter

•Selecting the pixels and their warp models

•Based on the regions where the THz beam passes

•Entire filter area is not active

Pixel Selection in the filter

Comparison between Pixelled & Non-Pixelled Filter Data

Without pixellation

2010

With pixellation

Approach 2: Effect of Incidence Angle

- Warping and undulating surface implies non-normal incidence angle at different regions of the filter.
- Attempt was made to take this into account.

- Effective variation in response is minimal (for maximum range)
- Hence not a key detrimental factor.

Conclusions

- Demonstration of Taguchi method being used in Inverse electromagnetic problem.
- A new approach of pixellating structuredependent components (stacked filter in this case) to analyze actual parameters.
- Future work: Surface imperfections via RCWA.

References

- Weng et al, "OPTIMIZATION USING TAGUCHI METHOD FOR ELECTROMAGNETIC APPLICATIONS", Proc. 'EuCAP 2006', Nice, France, November 2006.
- Weng et al, "Linear Antenna Array Synthesis Using Taguchi's Method: A Novel Optimization Technique in Electromagnetics", IEEE Transactions on Antennas and Propagation, VOL. 55, NO. 3, MARCH 2007.
- C.Rao," Factorial Experiments Derivable from Combinatorial Arrangements of Arrays", Supplement to Journal of Royal Statistical Society, Vol.9, No.1, 1947(pp. 128-139).
- Joannapoulos et al, "Photonic Crystals: Molding the Flow of Light", Princeton University Press(2008), pp. 6-65.
- J.Lekner,"Theory of Reflection",Springer (1987).